Какие металлы используют в ракетах?

0 0

Космические сплавы выдерживают перепады температур, устойчивы к внешним факторам и не дают микротрещин, которые могут привести к поломкам и авариям.

Современная ракета состоит из множества различных материалов, но именнометаллы составляют конструкционную основу современной космической техники.

«Крылатый металл» алюминий перешел из авиации в ракетостроение. Но здесь выяснилось, что его свойства не до конца удовлетворяют потребности конструкторов. Он хоть легкий и пластичный, но недостаточно прочный. Поэтому чаще используют дуралюмин или дюралюминий. В этом сплаве (а точнее – в целой группе сплавов) содержится не только алюминий, но и достаточное количество меди и марганца, которые повышают его прочность и жесткость. Однако такой материал плохо поддается сварке. Дюралюминиевые части, как правило, соединяют клепкой и болтами, что не гарантирует герметичность. Поэтому дуралюмин применяют в так называемых «сухих» отсеках ракет.

Какие металлы используют в ракетах?

В космонавтике чаще используются сплавы алюминия с магнием (до 6%), которые можно деформировать и сваривать. Из подобного сплава был создан корпус первого искусственного спутника земли – того самого шарика, который в октябре 1957 года был выведен на орбиту Земли. Также из алюминиево-магниевого сплава были изготовлены баки Р-7 – двухступенчатой баллистической ракеты, которая стала первой советской ракетой-носителем.

Какие металлы используют в ракетах?

Космическая гонка между привела к разработке и появлению большого количества более прочных сплавов на основе алюминия, в составе которых было до десятка компонентов. Но самыми прочными и легкими оказались сплавы из алюминия и лития.

Хоть сплавы «авиационного металла» остаются №1 по объемам использования в космической технике, но и сталь для авиационно-космической промышленности – незаменимый материал. Как в прошлом, так и сейчас. От цельных стальных корпусов, отказались после начала производства ракет, состоящих из нескольких ступеней. Но и сейчас есть космическая сталь – это различные марки «нержавейки».

Этот металл выигрывает у алюминиевых сплавов в жесткости. Конструкции из нержавеющей стали, которые должны выдерживать космические перегрузки и не деформироваться, получаются более компактными и легкими. К тому же сталь, даже самых экзотических марок, дешевле.

Какие металлы используют в ракетах?

Сейчас из нержавеющей стали производят баки для ракетного топлива. При этом стенки этих огромных конструкций очень тонкие. Например, американский разгонный блок Centaur имеет толщину стенок 0,51 мм. Чтобы это изделие высотой 12,68 м и диаметром 3,05 м не сминалось под собственным весом, его форму поддерживают за счет искусственно созданного внутреннего давления. Фактически его надувают как воздушный шарик.

Третий по распространенности металл, который используют в ракетах – это медь. Он тяжелый и дорогой, но имеет фантастическую теплопроводность. Поэтому из медных сплавов (как правило, это хромистая бронза) делают внутреннюю стенку ракетного двигателя. Она выдерживает жар в 3000°C, который вырывается из сопел во время старта.

Среди других металлов, которые нашли свое место в ракетной технике, можно выделить титан и серебро. Они важны с технологической точки зрения. Но вот объемы использования – незначительные. Ведь при выводе космического корабля на орбиту важен каждый килограмм, а удельный вес титана в 1,6 раза больше, чем у алюминия. При этом металлический титан и его сплавы, равно как и серебро, гораздо дороже стали и алюминиевых сплавов.

Сталь в ракетостроении

В современном мире на замену металлам и сплавам (в частности, стали) все чаще приходят стекло- и углепластик. Космическая сфера – не исключение. Например, корпуса американских многоразовых космических челноков (шаттлов) имели систему тепловой защиты из семи разных волокнистых и керамических материалов.

Еще одна новация – использование больших 3D-принтеров, которые могут создавать цельные элементы космических кораблей сложной формы. Акцент на такую возможность делают некоторые частные космические фирмы. Но что примечательно, среди используемых материалов – различные металлические сплавы. Новая технология позволяет избежать сварки, гибки и других операций, которые, как мы помним, невозможны с некоторыми легкими металлами.

А что же думает Илон Маск о будущем космонавтики? Можно ли использовать сталь для космических аппаратов?

Какие металлы используют в ракетах?

В конце 2018 года водном из интервью он сообщил, что сверхтяжелая ракета-носитель Starship, которая должна обеспечить доставку грузов на Луну и Марс, будет создана из нержавеющей стали. Это проще, дешевле и быстрее.

По его словам, 1 килограмм углеродного волокна стоит 135 долларов США. А с учетом отбраковки – до $200. К тому же его нужно очень много. А вот цена 1 кг стали стоит около $3. И она не является дефицитом, так как в мире много производителейлистовой нержавеющей стали. Уже разработаны и испытаны специальные сплавы, которые хорошо выдерживают перепады температур. Они устойчивы к внешним факторам и не дают микротрещин, которые могут привести к поломкам и авариям. А нержавеющая сталь с добавлением хрома и никеля хорошо переносит и сверхнизкие температуры ракетного топлива.

Какие металлы используют в ракетах?

В результате исследований, в марте 2019 года на заводе Маска было демонтировано многомиллионное оборудование для производства углепластикового корпуса ракеты, на который первоначально была сделана ставка. А 29 сентября того же года во время презентации полноразмерного прототипа Starship от компании SpaceX, Маск сказал, что благодаря использованию стали, на материалы для одной ракеты будет потрачено не $ 400-500 млн., а лишь $ 10 млн! И это будут корабли многоразового использования.

Источник: naukatehnika.com
Оставить комментарий

Мы используем файлы cookie. Продолжив использование сайта, вы соглашаетесь с Политикой использования файлов cookie и Политикой конфиденциальности Принимаю

Privacy & Cookies Policy