Телескоп Джеймс Уэбб нашел нейтронную звезду в центре остатка сверхновой

0 0
Телескоп Джеймс Уэбб нашел нейтронную звезду в центре остатка сверхновой
Выброс аргона в SN1987A.

Космический телескоп Джеймс Уэбб нашел лучшее свидетельство излучения нейтронной звезды на месте недавно наблюдавшейся сверхновой.

Сверхновая, известная как SN 1987A, возникла на расстоянии 160 000 световых лет от Земли в Большом Магеллановом Облаке. SN 1987A наблюдалась на Земле в 1987 году, это первая сверхновая, которую можно было увидеть невооруженным глазом с 1604 года — еще до появления телескопов.

Это дало астрономам редкую возможность с самого начала изучить эволюцию сверхновой и то, что осталось после нее. SN 1987A была сверхновой типа II с коллапсом ядра [1], что означает, что уплотненные остатки в ее ядре, как ожидается, образовали либо нейтронную звезду, либо черную дыру. Доказательства существования такого компактного объекта искались уже давно. Признаки присутствия нейтронной звезды были обнаружены и ранее, но впервые обнаружены эффекты излучения высокой энергии молодой нейтронной звезды.

Астрономия обычно предполагает изучение процессов, происходящих на протяжении как минимум десятков тысяч лет, что намного дольше, чем вся зафиксированная история человечества. Сверхновые — взрывные предсмертные агонии некоторых массивных звезд — вспыхивают в течение нескольких часов, а яркость взрыва достигает пика в течение нескольких месяцев. Остатки взорвавшейся звезды будут продолжать развиваться быстрыми темпами в течение следующих десятилетий. Таким образом, сверхновые дают очень редкую возможность изучить ключевой астрономический процесс в режиме реального времени.

Сверхновая SN 1987A впервые наблюдалась на Земле в феврале 1987 года, а ее яркость достигла максимума в мае того же года (хотя ее расстояние от Земли означает, что событие сверхновой действительно произошло примерно 160 000 лет назад). Это была первая сверхновая, которую можно было увидеть невооруженным глазом после сверхновой Кеплера в 1604 году.

Примерно за два часа до наблюдения SN 1987A в видимом свете три обсерватории по всему миру наблюдали всплеск нейтрино [2], продолжавшийся несколько секунд. Нейтринный взрыв незадолго до того, как появился видимый свет от SN 1987A был связан с тем же событием сверхновой. Это дало важные подсказки для уточнения нашего понимания сверхновых с коллапсом ядра. Ученые подозревали, что этот тип сверхновых может образовать нейтронную звезду или черную дыру.

С тех пор астрономы искали доказательства существования одного из этих компактных объектов [3] в центре расширяющегося остаточного материала. Признаки присутствия нейтронной звезды в центре остатка были обнаружены в последние несколько лет.

Наблюдения за гораздо более старыми остатками сверхновых, такими как Крабовидная туманность, подтверждают, что во многих из этих остатков находятся нейтронные звезды. Однако до сих пор не наблюдалось никаких прямых свидетельств существования нейтронной звезды после SN 1987A (или любого другого подобного недавнего взрыва сверхновой).

Клаас Франссон из Стокгольмского университета и ведущий автор этого исследования объясняет: «Из теоретических моделей SN 1987A десятисекундный всплеск нейтрино, наблюдаемый непосредственно перед сверхновой, предполагает, что в результате взрыва образовалась нейтронная звезда или черная дыра. Но мы не наблюдали каких-либо убедительных признаков такого новорожденного объекта в результате взрыва сверхновой. Вместе с Уэббом мы теперь нашли прямые доказательства эмиссии, вызванной новорожденным компактным объектом, скорее всего, нейтронной звездой».

Телескоп Джеймс Уэбб начал научные наблюдения в июле 2022 года, а наблюдения, лежащие в основе этой работы, были проведены 16 июля, в результате чего остаток SN 1987A стал первым объектом, наблюдаемым Уэббом.

Команда ученых использовала режим спектрографа среднего разрешения (MRS) прибора MIRI Уэбба, в разработке которого участвовали члены той же команды. MRS — это тип прибора, известный как интегральный полевой блок (IFU). IFU способны одновременно отображать объект и снимать его спектр. Прибор фиксирует спектр каждого пикселя, позволяя наблюдателям видеть спектроскопические различия по всему объекту. Спектральный анализ результатов показал сильный сигнал, обусловленный ионизированным аргоном из центра выброшенного материала, который окружает исходное место SN 1987A.

Последующие наблюдения с использованием режима IFU NIRSpec (ближнего инфракрасного спектрографа) Уэбба на более коротких длинах волн показали более сильно ионизированные [4] химические соединения, включая пятикратно ионизированный аргон (то есть атомы аргона, потерявшие пять из своих 18 электронов).

Оставить комментарий

Мы используем файлы cookie. Продолжив использование сайта, вы соглашаетесь с Политикой использования файлов cookie и Политикой конфиденциальности Принимаю

Privacy & Cookies Policy