Физики открыли новый вид магнетизма

0 0

Исследователи из Швейцарии экспериментально обнаружили, что новый материал приобретает магнитные свойства с помощью механизма, который ранее не наблюдался.

Физики открыли новый вид магнетизма

© pinterest

Магнетизм — свойство, которым обладают одни материалы и не обладают другие. Это свойство вызывают движения электронов внутри атомов материала. В результате создается магнитное поле, которое может притягивать или отталкивать другие материалы.

Самый известный вид магнетизма — так называемый ферромагнетизм. Он вызывается спинами электронов (спин — от английского «вращение», собственный момент импульса электрона), которые начинают выстраиваться в одном общем направлении. С ним люди сталкиваются, например, когда вешают магнитики на дверцу холодильника. Но есть и другие виды магнетизма. Среди них парамагнетизм — более слабая версия ферромагнетизма. Парамагнетизм возникает, когда спины электронов имеют случайные направления, недостаточно упорядочены.

Физики из Швейцарской высшей технической школы Цюриха открыли еще один вид магнетизма. Это произошло во время экспериментов с муаровыми материалами. Ученые получили их сложением друг на друга атомарно тонких слоев двух разных полупроводниковых материалов: диселенида молибдена и дисульфида вольфрама. Эти материалы имеют структуру двумерной (плоской) «решетки», которую можно «наполнить» электронами, если подать электрическое напряжение.

«Муаровые материалы вызывают большой интерес в последние годы, поскольку с их помощью можно исследовать квантовые эффекты сильно взаимодействующих электронов. Однако о магнитных свойствах этих материалов было известно очень мало. Мы решили исследовать эту область», — пояснил Атача Имамоглу, руководитель исследовательской группы.

Чтобы выяснить, каким видом магнетизма обладают эти муаровые материалы, Имамоглу и его команда сначала наполнили материал электронами. «Влили» в него электроны, подав электрический ток, постепенно увеличивая напряжение. Затем физики подсветили материал лазером и измерили, насколько сильно свет отражается при различных поляризациях. Поляризация указывала, в каком направлении колеблется электромагнитное поле: направлены ли спины электронов в одном и том же направлении (что указывает на ферромагнетизм) или в случайных направлениях (парамагнетизм).

Изначально материал проявлял свойства парамагнетизма. Но по мере того, как команда «добавляла» в решетку больше электронов, он показывал внезапный и неожиданный магнетический сдвиг. Начинал вести себя как ферромагнетик. Сдвиг происходил именно в момент, когда ученые заполняли муаровую решетку более чем одним электроном на каждое «вакантное» место в решетке.

«Мы наблюдали новый вид магнетизма, который невозможно объяснить обменным взаимодействием. Если бы причиной этого магнетизма было обменное взаимодействие, он бы наблюдался и при меньшем количестве электронов в решетке», — рассказал Имамоглу.

Физики открыли новый вид магнетизма
Изначально материал проявлял свойства парамагнетизма (слева), которые возникают, когда спины электронов (синие шарики на изображении) имеют случайные направления. Через некоторое время материал начал показывать свойства «кинетического ферромагнетизма» (справа), когда электроны объединяются в «дублоны» (красный шар), которые заполняют всю решетку посредством квантового туннелирования, заставляя спины «выравниваться» / © ETH Zurich

Физики дали свое объяснение возникшему эффекту. Они предположили, что когда в узлы решетки попадает более одного электрона, они объединяются в частицы, называемые «дублонами», которые в конечном счете заполняют всю решетку посредством квантового туннелирования. Однако при этом электроны «уменьшают» свою кинетическую энергию, «выравнивая» свои спины, что в итоге и создает ферромагнетизм. Этот «кинетический магнетизм» предсказывали теоретики на протяжении десятилетий, но ранее он еще ни разу не наблюдался в твердых материалах. 

Швейцарские исследователи планируют внимательнее изучить это явление, в том числе выяснить, сохраняются ли ферромагнетические свойства материала при более высоких температурах. В описываемом эксперименте ученым пришлось охладить материал до десятой доли градуса выше абсолютного нуля.

Подробнее с результатами работы ученых можно ознакомиться в статье, опубликованной в журнале Nature.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.

Источник: naked-science.ru
Оставить комментарий

Мы используем файлы cookie. Продолжив использование сайта, вы соглашаетесь с Политикой использования файлов cookie и Политикой конфиденциальности Принимаю

Privacy & Cookies Policy